76 research outputs found

    A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets

    Get PDF
    We present a targeted search for narrow-band (< 5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T_eq > 230 K, stars with 5 or more detected candidates or stars with a super-Earth (R_p 50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between Feb--Apr 2011 and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1-2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 x 10^21 erg s^-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be < 10^-6 M_solar^-1. Here we describe our observations, data reduction procedures and results.Comment: Accepted to the Astrophysical Journa

    A Search for Extraterrestrial Technosignatures in Archival FAST Survey Data Using a New Procedure

    Full text link
    The "search for extraterrestrial intelligence" (SETI) commensal surveys aim to scan the sky to find possible technosignatures from the extraterrestrial intelligence (ETI). The mitigation of radio frequency interference (RFI) is an important step, especially for the most sensitive Five-hundred-meter Aperture Spherical radio Telescope (FAST), which can detect more weak RFI. In this paper, we propose several new techniques for RFI mitigation, and use our procedure to search for ETI signals from the archival data of FAST's first SETI commensal survey. We detect the persistent narrowband RFI by setting a threshold of the signals' sky separation, and detect the drifting RFI (and potentially other types of RFI) using the Hough transform. We also use the clustering algorithms to remove more RFI and select candidates. The results of our procedure are compared to the earlier work on the same FAST data. We find that our methods, though relatively simpler in computation, remove more RFI (99.9912% compared to 99.9063% in the earlier work), but preserve the simulated ETI signals except those (5.1%) severely affected by the RFI. We also report more interesting candidate signals, about a dozen of which are new candidates that are not previously reported. In addition, we find that the proposed Hough transform method, with suitable parameters, also has the potential to remove the broadband RFI. We conclude that our methods can effectively remove the vast majority of the RFI while preserving and finding the candidate signals that we are interested in.Comment: 14 pages, 10 figures. AJ accepte

    New SETI Sky Surveys for Radio Pulses

    Full text link
    Berkeley conducts 7 SETI programs at IR, visible and radio wavelengths. Here we review two of the newest efforts, Astropulse and Fly's Eye. A variety of possible sources of microsecond to millisecond radio pulses have been suggested in the last several decades, among them such exotic events as evaporating primordial black holes, hyper-flares from neutron stars, emissions from cosmic strings or perhaps extraterrestrial civilizations, but to-date few searches have been conducted capable of detecting them. We are carrying out two searches in hopes of finding and characterizing these mu-s to ms time scale dispersed radio pulses. These two observing programs are orthogonal in search space; the Allen Telescope Array's (ATA) "Fly's Eye" experiment observes a 100 square degree field by pointing each 6m ATA antenna in a different direction; by contrast, the Astropulse sky survey at Arecibo is extremely sensitive but has 1/3,000 of the instantaneous sky coverage. Astropulse's multibeam data is transferred via the internet to the computers of millions of volunteers. These computers perform a coherent de-dispersion analysis faster than the fastest available supercomputers and allow us to resolve pulses as short as 400 ns. Overall, the Astropulse survey will be 30 times more sensitive than the best previous searches. Analysis of results from Astropulse is at a very early stage. The Fly's Eye was successfully installed at the ATA in December of 2007, and to-date approximately 450 hours of observation has been performed. We have detected three pulsars and six giant pulses from the Crab pulsar in our diagnostic pointing data. We have not yet detected any other convincing bursts of astronomical origin in our survey data. (Abridged)Comment: 9 pages, 6 figures, Accepted to Acta Astronautica "Special Issue: Life Signatures
    • …
    corecore